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Abstract. The most scalable approaches to certifying neural network
robustness depend on computing sound linear lower and upper bounds
for the network’s activation functions. Current approaches are limited
in that the linear bounds must be handcrafted by an expert, and can
be sub-optimal, especially when the network’s architecture composes op-
erations using, for example, multiplication such as in LSTMs and the
recently popular Swish activation. The dependence on an expert pre-
vents the application of robustness certification to developments in the
state-of-the-art of activation functions, and furthermore the lack of tight-
ness guarantees may give a false sense of insecurity about a particular
model. To the best of our knowledge, we are the first to consider the
problem of automatically synthesizing tight linear bounds for arbitrary
n-dimensional activation functions. We propose the first fully automated
method that achieves tight linear bounds while only leveraging the math-
ematical definition of the activation function itself. Our method leverages
an efficient heuristic technique to synthesize bounds that are tight and
usually sound, and then verifies the soundness (and adjusts the bounds
if necessary) using the highly optimized branch-and-bound SMT solver,
dReal. Even though our method depends on an SMT solver, we show
that the runtime is reasonable in practice, and, compared with state of
the art, our method often achieves 2-5X tighter final output bounds and
more than quadruple certified robustness.

1 Introduction

Prior work has shown that neural networks are vulnerable to various types of
(adversarial) perturbations, such as small l-norm bounded perturbations [39], ge-
ometric transformations [13, 22], and word substitutions [2]. Such perturbations
can often cause a misclassification for any given input, which may have serious
consequences, especially in safety critical systems. Certifying robustness to these
perturbations has become an important problem as it can show the network does
not exhibit these misclassifications, and furthermore previous work has shown
that a given input feature’s certified robustness can be a useful indicator to
determine the feature’s importance in the network’s decision [34, 25].
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Indeed, many approaches have been proposed for certifying the robustness
of inputs to these perturbations. Previous work typically leverages two types of
techniques: (1) fast and scalable, but approximate techniques [36, 15, 45, 34, 25],
and (2) expensive but exact techniques that leverage some type of constraint
solver [23, 24, 40]. Several works have also combined the two [37, 35, 43, 42].
The most successful approaches, in terms of scalability in practice, are built on
top of the approximate techniques, which all depend on computing linear bounds

for the non-linear activation functions.
However, a key limitation is that the linear bounds must be handcrafted and

proven sound by experts. Not only is this process difficult, but also ensuring the
tightness of the crafted bounds presents an additional challenge. Unfortunately,
prior work has only crafted bounds for the most common activation functions
and architectures, namely ReLU [43], sigmoid, tanh [36, 48, 46], the exp func-
tion [34], and some 2-dimensional activations found in LSTM networks [25]. As a
result, existing tools for neural network verification cannot handle a large num-
ber of activation functions that are frequently used in practice. Examples include
the GELU function [18], which is currently the activation function used in Ope-
nAI’s GPT [31], and the Swish function which has been shown to outperform the
standard ReLU function in some applications [32] and, in particular, can reduce
over-fitting in adversarial training [38]. In addition, these recently introduced ac-
tivation functions are often significantly more complex than previous activation
functions, e.g., we have gelu(x) = 0.5x(1 + tanh [

√

2/π(x+ 0.044715x3)]).
In this work, we study the problem of efficiently and automatically syn-

thesizing sound and tight linear bounds for any arbitrary activation function.
By arbitrary activation function, we mean any (non-linear) computable func-
tion z = σ(x1, . . . , xd) used inside a neural network with d input variables. By
sound we mean, given an interval bound on each variable x1 ∈ [l1, u1], x2 ∈
[l2, u2], . . . , xd ∈ [ld, ud], the problem is to efficiently compute lower bound co-
efficients cl1, c

l
2, . . . , c

l
d+1, and upper bound coefficients cu1 , c

u
2 , . . . , c

u
d+1 such that

the following holds:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

cl1x1 + cl2x2 + · · ·+ cld+1 ≤ σ(x1, . . . , xd) ≤ cu1x1 + cu2x2 + · · ·+ cud+1

(1)

By automatically, we mean that the above is done using only the definition of the
activation function itself. Finally, by tight, we mean that some formal measure,
such as the volume above/below the linear bound, is minimized/maximized.

We have developed a new method, named LinSyn, that can automatically

synthesize tight linear bounds for any arbitrary non-linear activation function
σ(·). We illustrate the flow of our method on the left-hand side of Fig. 1. As
shown, LinSyn takes two inputs: a definition of the activation function, and an
interval for each of its inputs. LinSyn outputs linear coefficients such that Equa-
tion 1 holds. Internally, LinSyn uses sampling and an LP (linear programming)
solver to synthesize candidate lower and upper bound coefficients. Next, it uses
an efficient local minimizer to compute a good estimate of the offset needed to
ensure soundness of the linear bounds. Since the candidate bounding functions
constructed in this manner may still be unsound, finally, we use a highly op-
timized branch-and-bound nonlinear SMT solver, named dReal [14], to verify

358



Input

Region

Analyzer

AutoLiRPA,

ERAN, etc)

Over-approx. of

Output Region

Synthesize Candidate

Coefficients

Verify

Adjust

Fail
Proved

LinSyn LinSyn Inputs

LinSyn Outputs

Bound Mods.

ReLU

Tanh

. . .

Fig. 1. The overall flow of LinSyn.

the soundness of the linear bounds. Even though our new method involves the
use of solvers and optimizers, the entire process typically takes less than 1/100th
of a second per pair of bounds.

Fig. 1 also illustrates how LinSyn fits in with existing neural network verifi-
cation frameworks, such as ERAN [1], and AutoLiRPA [47]. These tools take
as input a neural network, and a region of the neural networks input space, and
compute an over-approximation of the neural network’s outputs. Internally, these
frameworks have modules that compute linear bounds for a specific activation
functions. LinSyn is a one-size-fits-all drop-in replacement for these modules
that are invoked at runtime whenever a linear bound of a non-linear activation
function is needed.

Our method differs from these existing frameworks because a user (usually an
expert in neural network verification) must provide hand-crafted, sound linear
bounds for the activation functions of a neural network. However, to date, they
only support the previously mentioned activation functions. We note however
that the recent framework AutoLiRPA supports binary operations (namely
addition, subtraction, multiplication, and division) as “activation functions”.
Thus, while it’s not explicitly designed to handle complex activations, it has the
ability to by decomposing, e.g., gelu(x) into operations that it supports, and
then combining them. In contrast, LinSyn bounds the activation function as a

whole, which we will show produces much tighter linear bounds.
We have implemented our method in tool called LinSyn, and evaluated it

on benchmarks in computer vision and natural language processing (NLP). Our
evaluation shows that we can obtain final output bounds often 2-5X tighter
than the most general tool [47], thus allowing us to drastically increase certi-
fied robustness. In addition, our tool achieves accuracy equal to or better than
the handcrafted LSTM bounds of Popqorn [25], which is currently the most
accurate tool for analyzing LSTM-based NLP models, at a comparable runtime.

To summarize, this paper makes the following contributions:

– We propose the first method for automatically synthesizing tight linear
bounds for arbitrary activation functions.
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– We implement our approach in a tool called LinSyn, and integrate it as a
bounding module into the AutoLiRPA framework, thus producing a neural
network verification tool that can theoretically compute tight linear bounds
for any arbitrary activation function.

– We extensively evaluate our approach and show it outperforms state-of-the-
art tools in terms of accuracy and certified robustness by a large margin.

The rest of this paper is organized as follows. First, we provide the technical
background in Section 2. Then, we present our method for synthesizing the linear
bounds in Section 3 and our method for verifying the linear bounds in Section 4.
Next, we present the experimental results in Section 5. We review the related
work in Section 6 and, finally, give our conclusions in Section 7.

2 Preliminaries

In this section, we define the neural network verification problem, and illustrate
both how state-of-the-art verification techniques work, and their limitations.

2.1 Neural Networks

Following conventional notation, we refer to matrices with capital bold letters
(e.g. W ∈ R

n×m), vectors as lower case bold letters (e.g. x ∈ R
n), and scalars

or variables with lower case letters (e.g. x ∈ R). Slightly deviating from the
convention, we refer to a set of elements with capital letters (e.g. X ⊆ R

n).
We consider two types of networks in our work: feed-forward and recurrent.

We consider a feed-forward neural network to be a (highly) non-linear function
f : X→ Y, where X ⊆ R

n and Y ⊆ R
m. We focus on neural network classifiers.

For an input x ∈ X, each element in the output f(x) represents a score for a
particular class, and the class associated with the largest element is the chosen
class. For example, in image classification, X would be the set of all images, each
element of an input x ∈ X represents a pixel’s value, and each element in Y is
associated with a particular object that the image might contain.

In feed-forward neural networks the output f(x) is computed by performing
a series of affine transformations, i.e., multiplying by a weight matrix, followed
by application of an activation function σ(·). Formally, a neural network with l
layers has l two-dimensional weight matrices and l one-dimensional bias vectors
Wi,bi, where i ∈ 1..l, and thus we have f(x) = Wl · σ(Wl−1 · · · · σ(W1 · x +
b1) · · · + bl−1) + bl, where σ(·) is the activation function applied element-wise
to the input vector. The default choice of activation is typically the sigmoid
σ(x) = 1/(1 + e−x), tanh , or ReLU function σ(x) = max(0, x), however recent
work [18, 32, 31] has shown that functions such as gelu(x) and swish(x) =
x×sigmoid(x) can have better performance and desirable theoretical properties.

Unlike feed-forward neural networks, recurrent neural networks receive a se-
quence of inputs [x(1), . . . ,x(t)], and the final output of f on xt is used to perform
the classification of the whole sequence. Recurrent neural networks are state-ful,
meaning they maintain a state vector that contains information about inputs
previously given to f , which also gets updated on each call to f . In particular,
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we focus on long short-term memory (LSTM) networks, which have seen wide
adoption in natural language processing (NLP) tasks due to their sequential
nature. For LSTMs trained for NLP tasks, the network receives a sequence of
word embeddings. A word embedding is an n-dimensional vector that is associ-
ated with a particular word in a (natural) language. The distance between word
embeddings carries semantic significance – two word embeddings that are close
to each other in R

n typically have similar meanings or carry a semantic relat-
edness (e.g. dog and cat or king and queen), whereas unrelated words typically
are farther apart.

LSTM networks further differ from feed-forward networks in that their inter-
nal activation functions are two-dimensional. Specifically, we have the following
two activation patterns: σ1(x) × σ2(y) and x × σ1(y). The default choices are
σ1(x) = sigmoid(x), and σ2(x) = tanh(x). However, we can swap σ1 with any
function with output range bounded by [0, 1], and swap σ2 with any function
with output range bounded by [−1, 1]. Indeed, prior work [16] has shown that

σ1(x) = 1− ee
−x

can achieve better results in some applications.

2.2 Neural Network Verification

A large number of problems in neural network verification can be phrased as the
following: given an input region X ⊆ X, compute an over-approximation Y , such
that {f(x) | x ∈ X} ⊆ Y ⊆ Y. Typically X and Y are hyper-boxes represented
by an interval for each of their elements. A common problem is to prove that
a point x ∈ X is robust, meaning that small perturbations will not cause an
incorrect classification. In this case, X is the set of all perturbed versions of x,
and to prove robustness, we check that the element of the correct class in Y has
a lower bound that is greater than the upper bound of all other elements.

We illustrate a simple verification problem on the neural network shown in
Fig. 2. The network has two inputs, x1, x2, and two outputs x7, x8 which repre-
sent scores for two different classes. We refer to the remaining hidden neurons
as xi, i ∈ 3..6. Following prior work [36], we break the affine transformation and
application of the activation function into two separate neurons, and the neurons
are assumed to be ordered such that, if xi is in a layer before xj , then i < j.
For simplicity, in this motivating example, we let σ(x) = max(0, x) (the ReLU
function). We are interested in proving that the region x1 ∈ [−1, 1], x2 ∈ [−1, 1]
always maps to the first class, or in other words, we want to show that the lower
bound of x7 is greater than the upper bound x8.

2.3 Existing Methods

The most scalable approaches (to date) for neural network verification are based
on linear bounding and back-substitution [47], also referred to as abstract inter-
pretation in the polyhedral abstract domain [36] or symbolic interval analysis [43]
in prior work.

For each neuron xj in the network, these approaches compute a concrete
lower and upper bound lj , uj , and a linear lower and upper bound in terms of
the previous layer’s neurons. The linear bounds (regardless of the choice of σ(·))
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Fig. 2. Example of neural network verification.

Fig. 3. Linear bounds
for ReLU activation.

have the following form:
∑j−1

i=0 xi · c
l
i + clj ≤ xj ≤

∑j−1
i=0 xi · c

u
i + cuj . The bounds

are computed in a forward, layer-by-layer fashion which guarantees that any
referenced neurons will already have a bound computed when back-substitution
is performed.

To obtain the concrete bounds lj , uj for a neuron xj , the bounds of any non-
input neurons are recursively substituted into the linear bounds of xj until only
input nodes x1, ..., xn remain. Finally, the concrete input intervals are substituted
into the bound to obtain lj , uj .

Example We illustrate on the two-layer network in Fig. 2 for the previously
defined property. We trivially have l1 = l2 = −1, u1 = u2 = 1, −1 ≤ x1 ≤ 1, and
−1 ≤ x2 ≤ 1. We then compute linear bounds for x3, x4 in terms of previous
layer’s neurons x1, x2. We multiply x1, x2 by the edge weights, obtaining −x1+x2

as the lower and upper bound for both of x3 and x4. Since this bound is already
in terms of the input variables, we substitute the concrete bounds into this
equation and obtain l3 = l4 = −2 and u3 = u4 = 2.

Next, we need to compute the linear bounds for x5 = σ(x3) and x6 = σ(x4)
after applying the activation function. Solving this challenge has been the focus
of many prior works. There are two requirements. First, they need to be sound.
For example, for x5 we need to find coefficients cl1, c

l
2, c

u
1 , c

u
2 such that cl1x3+cl2 ≤

σ(x3) ≤ cu1x3 + cu2 for all x3 ∈ [l3, u3], and similarly for x6. Second, we want
them to be tight. Generally, this means that volume below the upper bound is
minimized, and volume below the lower bound is maximized.

As an example, prior work [36, 48] proposed the following sound and tight
bound for σ(x) = max(0, x):

∀xi ∈ [li, ui] .
ui

ui − li
xi +

−liui

ui − li
≤ σ(xi) ≤

{

0 −li ≥ ui

xi −li < ui

We illustrate the bound for x5 in Fig. 3. After computing this bound, we recur-
sively substitute variables in the bounds of x5 with the appropriate bound, and
compute l5, u5. The process then repeats for x6, followed by x7 and x8. We then
check l7 > u8 to verify the property, which fails in this case.
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2.4 Limitations of Existing Methods

Current approaches only support a limited number of activation functions, and
designing linear bounds for new activation functions often requires a significant
amount of effort even for a domain expert. For example, handcrafted sound
and tight linear bounds for activation functions such as ReLU, sigmoid, and
tanh [36, 45, 48, 46, 44, 43], convolution layers and pooling operations [6], the
two-dimensional activations found in LSTMs [25, 33], and those in transformer
networks [34] are worthy of publication. Furthermore, even bounds that are
hand-crafted by experts are not always tight. For example, a recent work [46]
was able to nearly triple the precision of previous state-of-the-art sigmoid and
tanh linear bounds simply by improving tightness.

To the best of our knowledge, AutoLiRPA [47] is the only tool that has
the ability to handle more complex activation functions, though it was not origi-
nally designed for this. It can do so by decomposing them into simpler operations,
and then composing the bounds together. We illustrate with swish(x) = x ×
sigmoid(x), where x ∈ [−1.5, 5.5]. AutoLiRPA would first bound sigmoid(x)
over the region [−1.5, 5.5], resulting in the bound .11x + .35 ≤ sigmoid(x) ≤
.22x + .51. For the left-hand side of the function, we trivially have x ≤ x ≤ x.
AutoLiRPA would then bound a multiplication y× z, where in this case y = x
and z = sigmoid(x), resulting in the final bound −.15x−.495 ≤ x×sigmoid(x) ≤
0.825x + .96. We illustrate this bound in Fig. 4, and we provide bounds com-
puted by LinSyn as a comparison point. LinSyn provides a slightly better upper
bound, and a significantly better lower bound. The reason for the looseness is be-
cause when AutoLiRPA bounds sigmoid(x), it necessarily accumulates some
approximation error because it is approximating the behavior of a non-linear
function with linear bounds. The approximation error effectively “loses some
information” about about its input variable x. Then, when bounding the multi-
plication operation, it has partially lost the information that y and z are related
(i.e. they are both derived from x). In contrast, LinSyn overcomes this issue by
considering swish(x) as a whole. We explain how in the following sections.

3 Synthesizing the Candidate Linear Bounds

In this section, we describe our method for synthesizing candidate, possibly
unsound linear bounds.

3.1 Problem Statement and Challenges

We assume we are given a d-dimensional activation function z = σ(x1, ..., xd),
and an input interval xi ∈ [li, ui] for each i ∈ {1..d}. Our goal is to synthesize
linear coefficients cli, c

u
i , where i ∈ {1..d + 1} that are sound, meaning that the

following condition holds:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

cl1x1 + cl2x2 + · · ·+ cld+1 ≤ σ(x1, x2, . . . ) ≤ cu1x1 + cu2x2 + · · ·+ cud+1

(2)
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Fig. 5. Candidate plane synthesis.

In addition, we want to ensure that the bounds are tight. The ideal definition
of tightness would choose linear bounds that maximize the precision of the overall
analysis, for example minimizing the width of the output neuron’s intervals.
Unfortunately, such a measure would involve all of the neurons of the network,
and so is impractical to compute. Instead, the common practice is to settle for
tightness that’s local to the specific neuron we are bounding.

Informally, we say a bound is tight if the volume below the upper bound is
minimized, and volume below the lower bound is maximized. Prior work [48,
36, 25] has found this to be a good heuristic1. Formally, volume is defined as

the following integral:
∫ u1

l1
· · ·

∫ ud

ld

∑d
i=1 c

u
i xi + cud+1 dx1 . . . dxd which, for the

upper bound, should be minimized subject to Equation 2. This integral has the
following closed-form solution:

d
∑

i=0





1

2
ci ×

d
∏

j=0

(

u
1+1i=j

i − l
1+1i=j

i

)



+ cd+1 ∗

d
∏

i=0

(ui − li) (3)

where 1i=j is the (pseudo Boolean) indicator function that returns 1 when its
predicate is true. We omit the proof, but note that the above expression can be
derived inductively on d. Also note that, since each li, ui are concrete, the above
expression is linear in terms of the coefficients, which will be advantageous in
our approach below.

While recent approaches in solving non-linear optimization problems [26, 8]
could directly minimize Equation 3 subject to Equation 2 in one step, we find
the runtime to be very slow. Instead, we adopt a two-step approach that first
uses efficient procedures for computing candidate coefficients that are almost
sound (explained in this section), and second, only calls an SMT solver when
necessary to verify Equation 2 (explained in the next section). We illustrate the
approach on a concrete example.

1 We also experimented with minimizing the volume between the linear bound and
the activation function, which gave almost identical results.
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3.2 Synthesizing Candidate Bounds

The first step in our approach computes candidate coefficients for the linear
bound. In this step we focus on satisfying the tightness requirement, while mak-
ing a best effort for soundness. We draw inspiration from prior work [33, 3]
that leverages sampling to estimate the curvature of a particular function, and
then uses a linear programming (LP) solver to compute a plane that is sound.
However, unlike prior work which targeted a fixed function, we target arbitrary
(activation) functions, and thus these are special cases of our approach.

The constraints of the LP are determined by a set of sample points S ⊂ R
d.

For the upper bound, we minimize Equation 3, subject to the constraint that
the linear bound is above σ(·) at the points in S. Using si to refer to the ith

element of the vector s ∈ S, the linear program we solve is:

minimize Equation (3) subject to
∧

s∈S

c1s1 + c2s2 + · · ·+ cd+1 ≥ σ(s) (4)

We generate S by sampling uniformly-spaced points over the input intervals.

Example We demonstrate our approach on the running example illustrated in
Fig. 5. For the example, let σ(x1) =

1
1+e−x1

(the sigmoid function, shown as the

blue curve), where x1 ∈ [−1, 3.5]. We focus only on the upper bound, but the
lower bound is computed analogously.

Plugging in the variables into Equation 3, the objective of the LP that we

minimize is:

∫ 3.5

−1

cu1x1 + cu2 dx1 = 6.625cu1 + 4.5cu2 which is shown as the shaded

region in Fig. 5.
We sample the points S = {−1, 0.25, 1.5, 2.75}, resulting in the following four

constraints: −c1 + c2 ≥ σ(−1) ∧ 0.25c1 + c2 ≥ σ(0.25) ∧ 1.5c1 + cs ≥ σ(1.5) ∧
2.75c1 + c2 ≥ σ(2.75). Solving the LP program results in c1 = 0.104, c2 = 0.649,
which is illustrated by the green line in Fig. 5.

4 Making the Bound Sound

In this section, we present our method for obtaining soundness because the
candidate bounds synthesized in the previous section may not be sound. Here,
we focus only on making the upper bound sound, but note the procedure for the
lower bound is similar.

4.1 Problem Statement and Challenges

We are given the activation function σ(·), the input intervals xi ∈ [li, ui], and the
candidate coefficients c1, c2, . . . , cd+1. The goal is to compute an upward shift,
if needed, to make the upper bound sound. First, we define the violation of the
upper bound as:

v(x1, x2, . . . , xd) := cu1x1 + cu2x2 + · · ·+ cud+1 − σ(x1, x2, . . . , xd) (5)
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A negative value indicates the upper bound is not sound. We then need to
compute a lower bound on v(·), which we term vl. Then the equation we pass to
the verifier is:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

v(x1, x2, . . . , xd) + (−vl) ≥ 0
(6)

Expanding v(·) with its definition in the above equation results in the soundness
definition of Equation 2. Thus, if the verifier proves Equation 6, then shifting the
upper bound upward by −vl ensures its soundness. For our running example,
the quantity vl is shown by the red line in Fig. 5.

This problem is non-trivial because finding a solution for vl requires a search
for a sound global minimum/maximum of a function involving σ(·), which may
be highly non-linear. State-of-the-art SMT solvers such as Z3 do not support
all non-linear operations, and furthermore, since we assume arbitrary σ(·), the
problem may even be (computationally) undecidable.

4.2 Verifying the Bound

We first assume we have a candidate (possibly unsound) vl, and explain our
verification method. To ensure decidability and tractability, we leverage the δ-
decision procedure implemented by dReal [14]. To the best of our knowledge
this is is the only framework that is decidable for all computable functions.

In this context, instead of verifying Equation 6, the formula is first negated
thus changing it into an existentially quantified one, and then applying a δ-
relaxation. Formally, the formula dReal attempts to solve is:

∃x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

v(x1, x2, . . . ) + (−vl) ≤ δ
(7)

where δ is a small constant (e.g. 10−5), which we explain in a moment. The
above is formulated such that Equation 6 holds if (but not only if) there does
not exist a solution to Equation 7.

Internally, dReal performs interval constraint propagation (ICP) on the left-
hand side of Equation 7 over the intervals defined by each [li, ui] to compute an
upper bound, and compares this upper bound with δ. If the upper bound is less
than δ, then no solution exists (i.e., Equation 7 is unsatisfiable, and we have
proven the original Equation 6 holds). Otherwise a solution may exist. In this
case, dReal iteratively partitions the input space defined by the [li, ui] and
repeats this process on each partition separately.

dReal stops partitioning either when it proves all partitions do not have
solutions , or when a partition whose intervals all have width less than some ǫ is
found. Here, ǫ is proportional to δ (i.e., smaller δ means smaller ǫ). In the latter
case, dReal returns this partition as a “solution”.

While Equation 6 holds if there does not exist a solution to Equation 7,
the converse does not hold true both because of the error inherent in ICP, and
because we “relaxed” the right-hand side of Equation 7. This means that δ
controls the precision of the analysis. δ controls both the size of the false solution
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space, and determines how many times we will sub-divide the input space before
giving up on proving Equation 7 to be unsatisfiable.

Practically, this has two implications for our approach. The first one is that
our approach naturally inherits a degree of looseness in the linear bounds defined
by δ. Specifically, we must shift our plane upward by δ in addition to the true
vl, so that dReal can verify the bound. The second is that we have to make
a trade-off between computation and precision. While smaller δ will allow us
to verify a tighter bound, it generally will also mean a longer verification time.
In our experiments, we find that δ = 10−7 gives tight bounds at an acceptable
runtime, though we may be able to achieve a shorter runtime with a larger δ.

4.3 Computing vl

Now that we have defined how we can verify a candidate bound, we explain our
approach for computing vl. The implementation is outlined in Algorithm 1. Since
failed calls to the verifier can be expensive, at lines 1-2, we first use a relatively
cheap (and unsound) local optimization procedure to estimate the true vl. While
local optimization may get stuck in local minima, neural network activation
functions typically do not have many local minima, so neither will v(·). We use
L-BFGS-B [7], the bounded version of L-BFGS, to perform the optimization. At
a high-level, L-BFGS-B takes as input v(·), the input bounds xi ∈ [li, ui], and
an initial guess g ∈ R

d at the location of the local minimum. It then uses the
Jacobian matrix (i.e., derivatives) of v(·) to iteratively move towards the local
minimum (the Jacobian can be estimated using the finite differences method
or provided explicitly – we use Mathematica [21] to obtain it). We find that
sampling points uniformly in v(·) can usually find a good g, and thus L-BFGS-B
often converges in a small number of iterations. L-BFGS-B typically produces an
estimate within 10−8 of the true value. To account for estimation error we add
an additional 10−6, plus 2 × δ to account for the δ-relaxation (line 3). Finally,
we iteratively decrease vl by a small amount (10−6) until dReal verifies it (lines
4-9).

Going back to our motivating example, we would estimate vl with a local
minimizer, and then use dReal to verify the following:

∀x1 ∈ [−1, 3.5] . σ(x1) ≤ cu1x1 + cu2 + (−vl) + 2× δ + 10−6

If verification fails, we iteratively decrease the value of vl by 10−6, and call dReal

until the bound is verified. The final value of cu1x1 + cu2 + (−vl) + 2 × δ + 10−6

is the final sound upper bound.

4.4 On the Correctness and Generality of LinSyn

The full LinSyn procedure is shown in Algorithm 2. The correctness (i.e. sound-
ness) of the synthesized bounds is guaranteed if the vl returned by Algorithm 1
is a true lower bound on v(·). Since Algorithm 1 does not return until dReal

verifies vl at line 6, the correctness is guaranteed.
Both our procedure in Section 3 and L-BFGS-B require only black-box access

to σ(·), so the only potential limit to the arbitrariness of our approach lies in
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Algorithm 1: BoundViolation

Input: Activation σ(x1, x2, . . . ), Candidate Coefficients cu1 , c
u

2 , . . . , c
u

d+1,
Input Bounds x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , Jacobian ∇v (optional)

Output: Lower Bound on Violation vl
1 g← sample points on v(x1, x2, . . . ) and take minimum;
2 vl ← L-BFGS-B(v(x1, x2, . . . ), x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,g,∇v) ;

3 vl ← vl − 10−6
− 2δ;

4 while True do

5 // Call dReal
6 if Equation 2 holds then

7 return vl;
8 end

9 vl ← vl − 10−6;

10 end

Algorithm 2: SynthesizeUpperBoundCoefficients

Input: Activation σ(x1, x2, . . . ), Input Bounds x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,
Jacobian ∇v (optional)

Output: Sound Coefficients cu1 , c
u

2 , . . . , c
u

d+1

1 cu1 , c
u

2 , . . . , c
u

d+1 ← Sampling and LP procedure on σ(x) over Input Bounds;
2 vl ← BoundViolation(cu1 , c

u

2 , . . . , c
u

d+1, x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,∇v);
3 cud+1 ← cud+1 + (−vl);
4 return cu1 , c

u

2 , . . . , c
u

d+1;

what elementary operations are supported by dReal. During our investigation,
we did not find activations that use operations unsupported by dReal, however
if an unsupported operation is encountered, one would only need to define an
interval extension [28] for the operation, which can be done for any computable
function.

5 Evaluation

We have implemented our method in a module called LinSyn, and integrated
it into the AutoLiRPA neural network verification framework [47]. A user in-
stantiates LinSyn with a definition of an activation function, which results in
an executable software module capable of computing the sound linear lower and
upper bounds for the activation function over a given input region. LinSyn uses
Gurobi [17] to solve the LP problem described in Section 3, and dReal [14] as
the verifier described in 4. In total, LinSyn is implemented in about 1200 lines
of Python code.

5.1 Benchmarks

Neural Networks Our benchmarks are nine deep neural networks trained on the
three different datasets shown below. In the following, a neuron is a node in the
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neural network where a linear bound must be computed, and thus the neuron
counts indicate the number of calls to LinSyn that must be made.

– MNIST: MNIST is a dataset of hand-written integers labeled with the
corresponding integer in the image. The images have 28x28 pixels, with each
pixel taking a gray-scale value between 0 to 255. We trained three variants of
a 4-layer CNN (convolutional neural network). Each takes as input a 28x28
= 784-dimensional input vector and outputs 10 scores, one for each class.
In total, each network has 2,608 neurons – 1568, 784, and 256 in the first,
second, and third layers, respectively.

– CIFAR: CIFAR is a dataset of RGB images from 10 different classes. The
images have 32x32 pixels, with each pixel having an R, G, and B value in
the range 0 to 255. We trained three variants of a 5-layer CNN. Each takes
a 32x32x3 = 3072-dimensional input vector and outputs 10 scores, one for
each class. In total, each network has 5376 neurons, 2048, 2048, 1024, and
256 neurons in the first, second, third, and fourth layers, respectively.

– SST-2: The Stanford Sentiment Treebank (SST) dataset consists of sen-
tences taken from movie reviews that are human annotated with either pos-
itive or negative, indicating the sentiment expressed in the sentence. We
trained three different variants of the standard LSTM architecture. These
networks take as input a sequence 64-dimensional word embeddings and out-
put 2 scores, one for positive and one for negative. Each network has a hidden
size of 64, which works out to 384 neurons per input in the input sequence.

0.5x(1 + tanh (
√

2/π(x + 0.044715x3)))
(GeLU)

min(1,max(x,−1)) (Hard Tanh)

1− e−ex (Log-Log)

x ∗ σ(x) (Swish)

Fig. 6. Nonlinear activation functions.

Activation Functions We experi-
mented with the four activation
functions as shown in Fig. 6.
GELU and Swish were recently
proposed alternatives to the stan-
dard ReLU function due to
their desirable theoretical proper-
ties [18] such as reduced overfit-
ting [38], and they have seen use
in OpenAI’s GPT [31] and very
deep feed forward networks [32].
Similarly, Hard-Tanh is an op-
timized version of the common
tanh function, while the Log-

Log function [16] is a sigmoid-like
function used in forecasting.

The Verification Problem The verification problem we consider is to certify that
an input is robust to bounded perturbations of magnitude ǫ, where ǫ is a small
number. Certifying means proving that the classification result of the neural
network does not change in the presence of perturbations. We focus on l∞ ro-
bustness, where we take an input x ∈ R

n and allow a bounded perturbation of
+/− ǫ to each element in x. For each network, we take 100 random test inputs,
filter out those that are incorrectly classified, apply an ǫ bounded perturbation
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Table 1. Comparing certified accuracy and run time of LinSyn and AutoLiRPA.

Network Architecture
AutoLiRPA [47] Our Method (new)
% certified time (s) % certified time(s)

MNIST 4-Layer CNN with Swish 0.34 15 0.76 796
4-Layer CNN with Gelu 0.01 359 0.72 814
4-Layer CNN with Log Log 0.00 38 0.24 867

CIFAR 5-Layer CNN with Swish 0.03 69 0.35 1,077
5-Layer CNN with Gelu 0.00 1,217 0.31 1,163
5-Layer CNN with Log Log 0.59 98 0.69 717

SST-2 LSTM with sig tanh 0.93 37 0.91 1,074
LSTM with hard tanh - - 0.64 2300
LSTM with log log 0.16 1,072 0.82 2,859

Table 2. Comparing certified accuracy and run time of LinSyn and POPQORN.

Network Architecture
POPQORN [25] Our Method (new)
% certified time (s) % certified time(s)

SST-2 LSTM with sig tanh 0.93 1517 0.90 1,074

to the correctly classified inputs, and then attempt to prove the classification re-
mains correct. We choose ǫ values common in prior work. For MNIST networks,
in particular, we choose ǫ = 8/255. For CIFAR networks, we choose ǫ = 1/255.
For SST-2 networks, we choose ǫ = 0.04, and we only apply it to the first word
embedding in the input sequence.

5.2 Experimental Results

Our experiments were designed to answer the following two questions: (1) How
do LinSyn’s linear bounds compare with handcrafted bounds? (2) How does
the runtime of LinSyn compare to state-of-the-art linear bounding techniques?
To answer these questions, we compare the effectiveness of LinSyn’s linear
bounds with the state-of-the-art linear bounding technique implemented in Au-

toLiRPA. To the best of our knowledge this is the only tool that can handle the
activation functions we use in our benchmarks. As another comparison point,
we also compare with POPQORN, a state-of-the-art linear bounding technique
for LSTM networks. POPQORN tackles the challenge of computing tight linear
bounds for sigmoid(x)×tanh(y) and x×sigmoid(y) using an expensive gradient
descent based approach, and thus makes a good comparison point for runtime
and accuracy. Our experiments were conducted on a computer with an Intel 2.6
GHz i7-6700 8-core CPU and 32GB RAM. Both AutoLiRPA and LinSyn are
engineered to bound individual neurons in parallel. We configure each method
to use up to 6 threads.

Overall Comparison First, we compare the overall performance of our new
method and the default linear bounding technique in AutoLiRPA. The re-
sults are shown in Table 1. Here, Columns 1-2 show the name of the dataset and
the type of neural networks. Columns 3-4 show the results of the default Au-

toLiRPA, including the percentage of inputs certified and the analysis time in
seconds. Similarly, Columns 5-6 show the results of our new method.
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Fig. 7. Scatter plot comparing the
final output interval width of Lin-

Syn and AutoLiRPA.

Fig. 8. Histogram of width ratios between
AutoLiRPA and LinSyn. Ratio reported
as AutoLiRPA

LinSyn
.

The results in Table 1 show that, in terms of the analysis time, our method is
slower, primarily due to the use of constraint solvers (namely dReal and the LP
solver) but overall, the analysis speed is comparable to AutoLiRPA. However,
in terms of accuracy, our method significantly outperforms AutoLiRPA. In
almost all cases, our method was able to certify a much higher percentage of the
inputs. For example, LinSyn more than quadruples the certified robustness of
the LSTM with log log benchmark, and handles very well the relatively complex
GeLU function. As for SST-2: LSTM with hard tanh, AutoLiRPA does not
support the general max(x, y) operation, so a comparison is not possible without
significant engineering work.

The only exception to the improvement is SST-2: LSTM with sig tanh, for
which the results are similar (.93 versus .91). In this case, there is likely little
to be gained over the default, decomposition-based approach of AutoLiRPA in
terms of tightness because the inputs to sigmoid(x)×tanh(y) and x×sigmoid(y)
are not related, i.e., x and y are two separate variables. This is in contrast to,
e.g., swish(x) = x × sigmoid(x), where the left-hand side and right-hand side
of the multiplication are related.

In Table 2, we show a comparison between LinSyn and POPQORN. The
result shows that our approach achieves similar certified robustness and runtime,
even though POPQORN was designed to specifically target this particular type
of LSTM architecture, while LinSyn is entirely generic.

Detailed Comparison Next, we perform a more in depth comparison of accuracy
by comparing the widths of the final output neuron’s intervals that are computed
by AutoLiRPA and LinSyn. The results are shown in the scatter plot in Fig. 7
and the histogram in Fig. 8. Each point in the scatter plot represents a single
output neuron xi for a single verification problem. The x-axis is the width of
the interval of the output neuron xi (i.e. ui − li) computed by LinSyn, and
the y-axis is the width computed by AutoLiRPA. A point above the diagonal
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line indicates that LinSyn computed a tighter (smaller) final output interval.
In the histogram, we further illustrate the accuracy gain as the width ratio,
measured as AutoLiRPA

LinSyn
. Overall, the results show that LinSyn is more accurate

in nearly all cases, and LinSyn often produces final output bounds 2-5X tighter
than AutoLiRPA.

6 Related Work

Linear Bound-based Neural Network Verification There is a large body of work
on using linear-bounding techniques [36, 48, 34, 6, 45, 29, 30, 46, 27] and
other abstract domains such as concrete intervals, symbolic intervals [44], and
Zonotopes [15], for the purpose of neural network verification. All of these can
be thought of as leveraging restricted versions of the polyhedral abstract do-
main [10, 9]. To the best of our knowledge, these approaches are the most scal-
able (in terms of network size) due to the use of approximations, but this also
means they are less accurate than exact approaches. In addition, all these ap-
proaches have the limitation that they depend on bounds that are hand-crafted
by an expert.

SMT solver-based Neural Network Verification There is also a large body
of work on using exact constraint solving for neural network verification. Early
works include solvers specifically designed for neural networks, such as Reluplex
and Marabou [23, 24] and others [11], and leveraging existing solvers [12, 20,
5, 20, 4, 40, 19]. While more accurate, the reliance on an SMT solver typically
limits their scalability. More recent work often uses solvers to refine the bounds
computed by linear bounding [35, 37, 43, 42, 41]. Since the solvers leveraged in
these approaches usually involve linear constraint solving techniques, they are
usually only applicable to piece-wise linear activation functions such as ReLU
and Max/Min-pooling.

7 Conclusions

We have presented LinSyn, a method for synthesizing linear bounds for arbi-
trary activation functions. The key advantage of LinSyn is that it can handle
complex activation functions, such as Swish, GELU, and Log Log as a whole,
allowing it to synthesize much tighter linear bounds than existing tools. Our
experimental results show this increased tightness leads to drastically increased
certified robustness, and tighter final output bounds.
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